Absolute measurements of Pure leptonic D_s decays and f_{D_s} decay constant from BaBar

Aidan Randle-Conde, BaBar, Southern Methodist University
Overview

- The BaBar experiment
- Motivation
- Reconstruction
- Systematic uncertainties
- Results
- Summary and conclusion
The BaBar detector is at the SLAC National Accelerator Laboratory, home of the PEP-II asymmetric energy e^+e^- collider.

The experiment was an excellent B, charm and τ factory, generating over 700 million cc pairs, from December 1999 to April 2008.
In the standard model the leptonic decays of the D_s meson provide a clean way to measure the decay constant f_{D_s}:

$$B(D_s \rightarrow l \nu) = \frac{\Gamma(D_s \rightarrow l \nu)}{\Gamma(D_s \rightarrow all)} = \frac{G_F^2 |V_{cs}|^2 f_{D_s}^2 M_{D_s}^3 (m_l/M_{D_s})^2 \left(1 - \frac{m_l^2}{M_{D_s}^2}\right)^2}{8\pi}$$
Motivation

- In October 2009 unquenched lattice quantumchromodynamical (UL-QCD) calculations of the decay constant f_{D_s} disagree with experimental results by 2σ:

- **Green band**: world average of experimental results.
- **Gray band**: World average of UL-QCD calculations
- **Pink band**: $D_s \rightarrow \mu \nu$ measurements
- **Blue band**: $D_s \rightarrow \tau \nu$ measurements

Status of f_{D_s} October 2009.

χ^2/dof = 0.40

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDG 2006</td>
<td>0.273</td>
</tr>
<tr>
<td>BaBar/HFAG</td>
<td>0.314</td>
</tr>
<tr>
<td>Belle</td>
<td>0.314</td>
</tr>
<tr>
<td>CLEO $\pi\nu$</td>
<td>0.329</td>
</tr>
<tr>
<td>CLEO $e\nu$</td>
<td>0.329</td>
</tr>
<tr>
<td>ETMC</td>
<td>0.329</td>
</tr>
<tr>
<td>Fermilab/MILC</td>
<td>0.329</td>
</tr>
<tr>
<td>HPQCD</td>
<td>0.329</td>
</tr>
</tbody>
</table>

$a 2.0\sigma$ discrepancy, or $1.8\sigma \pm 1.6\sigma \pm -0.3\sigma$.
This discrepancy could be the result of new physics:

- Charged Higgs boson

- Leptoquarks

- SUSY

More details in the backup slides.
The event reconstruction allows an absolute measurement of branching fractions.

The number of D_s mesons produced at BaBar is measured (the denominator.)

The number of $D_s \rightarrow l \nu$ events is measured (the numerator.)

The branching fraction is obtained by calculating the efficiency corrected ratio of these numbers.

This analysis uses the entire dataset, including $\Upsilon(4S)$, $\Upsilon(3S)$, $\Upsilon(2S)$ and off-peak data.
The event topology is split into two halves:

- **Tag side**
 - Charm tag (D)
 - Flavor balancing kaon (K)
 - Baryon balancing proton (p)
 - Fragmentation system (X)

- **Signal side**
 - D_s meson (D_s)
 - Photon (γ)
 - Lepton (l)
The charm tag is reconstructed in the following modes:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D⁰</td>
<td>D⁺</td>
<td>Λ⁺</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Branching fraction</td>
<td>Mode</td>
<td>Branching fraction</td>
</tr>
<tr>
<td>D⁰ → K⁻π⁺</td>
<td>3.9%</td>
<td>D⁺ → K⁻π⁺π⁺</td>
<td>9.4%</td>
</tr>
<tr>
<td>D⁰ → K⁻π⁺π⁰</td>
<td>13.9%</td>
<td>D⁺ → K⁻π⁺π⁺π⁰</td>
<td>6.1%</td>
</tr>
<tr>
<td>D⁰ → K⁻π⁺π⁻π⁺</td>
<td>8.1%</td>
<td>D⁺ → K⁰ˢ⁻π⁺</td>
<td>1.5%</td>
</tr>
<tr>
<td>D⁰ → K⁰ˢ⁻π⁺π⁻</td>
<td>2.9%</td>
<td>D⁺ → K⁰ˢ⁻π⁺π⁰</td>
<td>6.9%</td>
</tr>
<tr>
<td>D⁰ → K⁻π⁺π⁺π⁺π⁰</td>
<td>4.2%</td>
<td>D⁺ → K⁰ˢ⁻π⁺π⁻</td>
<td>3.1%</td>
</tr>
<tr>
<td>D⁰ → K⁰ˢ⁻π⁺π⁻π⁰</td>
<td>5.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Λ⁺ → Σ⁻π⁺</td>
</tr>
</tbody>
</table>
Charm tag selection

- The charm tag modes selections were optimized with respect to significance using 8 fb$^{-1}$ of data.
- Selection variables are:
 - tag mass.
 - particle identification.
 - momentum in the center of mass frame.
 - $P(\chi^2|n)$ of a kinematic fit of the tag.
- Significance ranges from 9 ($\Lambda_c^+ \rightarrow \Sigma \pi^+$) to 350 ($D^0 \rightarrow K^-\pi^+$)
- Tags are 74% D^0, 23% D^+, 4% Λ_c^+.
The energy at BaBar is far above $c\bar{c}$ production threshold.

Additional mesons are produced at the interaction point.

We reconstruct the fragmentation system in the following states:

<table>
<thead>
<tr>
<th>No pions</th>
<th>π^\pm</th>
<th>$\pi^\pm\pi^\pm$</th>
<th>$\pi^\pm\pi^\pm\pi^\pm$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0</td>
<td>$\pi^\pm\pi^0$</td>
<td>$\pi^\pm\pi^\pm\pi^0$</td>
<td></td>
</tr>
</tbody>
</table>

$K\bar{K}$ contributions are negligible.
The reconstruction of the fragmentation system is often incomplete due to:

- Misreconstruction.
- Missing particles in the event.
- Particle identification efficiency effects.

Define:

- n_X^T as the true number of pions from fragmentation.
- n_X^R as the reconstructed number of pions from fragmentation.

Unfold the n_X^T distribution from n_X^R.
D_s^{*+} reconstruction

- A D_s^{*+} meson is reconstructed recoiling against the DKX system.
- A photon consistent with the decay $D_s^{*+} \rightarrow D_s^+ \gamma$ is identified.
- A kinematic fit is performed to the whole event.
- The mass of the D_s^{*+} candidate is then constrained to the mass provided by the Particle Data Group.
Right sign and wrong sign

- We define right sign and wrong sign reconstructions:
 - Right sign: any reconstruction where the DKX system flavor and charge are consistent with recoiling against a D_s^{*+}.
 - Wrong sign: any reconstruction where the DKX system flavor and charge are not consistent with recoiling against a D_s^{*+}.
 - Other: any other reconstruction (e.g., where the charge of the system recoiling against the DKX system would be zero.)
The yield of D_s mesons is determined using a 2-D fit to:

- Mass recoiling against the $DKX\gamma$ system
- n_X^R, the reconstructed number of pions in the fragmentation system.

We obtain $n(D_s) = 67,200 \pm 1500$.
While the 2-D fit is being performed the n_T distribution is unfolded.

A weights model for each value of $n_T = j$ is constructed:

$$w_{j}^{RS} = \frac{(j - \alpha)^\beta e^{-\gamma j}}{\sum_{k=0}^{6}(k - \alpha)^\beta e^{-\gamma k}}$$

The parameters are floated in the 2-D fit.

Efficiencies are calculated after n_T unfolding.
To validate the D_s reconstruction technique a $D_s \rightarrow KK\pi$ crosscheck is used.

Due to resonances, an efficiency weighted Dalitz plot is used.

We obtain $B(D_s \rightarrow KK\pi) = (5.78 \pm 0.20 \pm 0.30) \times 10^{-2}$

Consistent with the Particle Data Group.
Extra energy

- An important variable in the analysis is the extra energy, E_{Extra}.
- E_{Extra} is the energy in the calorimeter where:
 - Each cluster of calorimeter crystals does not overlap with the candidates in the reconstruction.
 - Each cluster has a minimum energy of 30MeV.
- If the only remaining particles in the event are neutrinos, we expect E_{Extra} to be very small.
D_s \rightarrow e \nu \text{ reconstruction}

- An electron candidate is identified, using standard particle identification techniques.
- The mass of the D_s candidate is constrained to the mass provided by the Particle Data Group.
- We require $E_{\text{Extra}} < 1\,\text{GeV}$.
- A kinematic fit to the whole event is performed.
- A binned maximum likelihood fit to the mass squared recoiling against the DKX γe system, m_m^2, is performed.
We obtain a yield of 6.1 ± 2.2 ± 5.2 events.

A Bayesian limit is obtained, assuming a uniform prior distribution for $B(D_s \rightarrow e \nu)$.

Using Monte Carlo integration we obtain:

$$B(D_s \rightarrow e \nu) < 2.8 \times 10^{-4}$$
The same fit and selection criteria are used to measure the branching fraction $B(D_s \rightarrow \mu \nu)$.

This time we identify a muon candidate.

We obtain events 274 ± 17, which yields

$$B(D_s \rightarrow \mu \nu) = (6.02 \pm 0.37 \pm 0.33) \times 10^{-3}$$
$D_s \rightarrow \tau \, \nu$ reconstruction

- We measure the final states
 - $\tau \rightarrow e \, \nu \, \nu$
 - $\tau \rightarrow \mu \, \nu \, \nu$

- Particle identification procedure remains the same as for $D_s \rightarrow e \, \nu$ and $D_s \rightarrow \mu \, \nu$ as appropriate.

- For $D_s \rightarrow \tau \, \nu$; $\tau \rightarrow \mu \, \nu \, \nu$ we require $m_m^2 > 0.3$ GeV$^2c^{-4}$ to remove backgrounds from $D_s \rightarrow \mu \, \nu$ events.

- For $D_s \rightarrow \tau \, \nu$ decays we perform a binned maximum likelihood fit to E_{Extra}.
We obtain the following yields of events:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Yield</th>
<th>Branching fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_s \rightarrow \tau \nu$; $\tau \rightarrow e \nu \nu$</td>
<td>408 ± 42</td>
<td>$(4.91 \pm 0.50 \pm 0.66) \times 10^{-2}$</td>
</tr>
<tr>
<td>$D_s \rightarrow \tau \nu$; $\tau \rightarrow \mu \nu \nu$</td>
<td>340 ± 32</td>
<td>$(5.07 \pm 0.48 \pm 0.54) \times 10^{-2}$</td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td>$(5.00 \pm 0.35 \pm 0.49) \times 10^{-2}$</td>
</tr>
</tbody>
</table>
Systematic uncertainties

- Due to the nature of the reconstruction, most of the systematic uncertainties cancel out exactly.
- The remaining dominant systematic uncertainties arise from:

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Dominant uncertainty</th>
<th>Contribution to uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_s \rightarrow e \nu$</td>
<td>n_χ^T weights model</td>
<td>2.8%</td>
</tr>
<tr>
<td>$D_s \rightarrow \mu \nu$</td>
<td>Signal and background models</td>
<td>3.4%</td>
</tr>
<tr>
<td>$D_s \rightarrow \tau \nu$; $\tau \rightarrow e \nu \nu$</td>
<td>Background model</td>
<td>9.6%</td>
</tr>
<tr>
<td>$D_s \rightarrow \tau \nu$; $\tau \rightarrow \mu \nu \nu$</td>
<td>Background model</td>
<td>11.7%</td>
</tr>
</tbody>
</table>
Results

Values for f_{D_s} are obtained using the formula:

$$f_{D_s^+} = \frac{1}{G_F m_\ell \left(1 - \frac{m_\ell^2}{M_{D_s^+}^2}\right) |V_{cs}|} \sqrt{\frac{8\pi B(D_s^+ \rightarrow \ell\nu)}{M_{D_s^+} \tau_{D_s^+}}},$$

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>$B(D_s \rightarrow \ell\nu)$</th>
<th>f_{D_s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_s \rightarrow \mu\nu$</td>
<td>$(6.02 \pm 0.37 \pm 0.33) \times 10^{-3}$</td>
<td>$(265.7 \pm 8.4 \pm 7.9) \text{ MeV}$</td>
</tr>
<tr>
<td>$D_s \rightarrow \tau\nu$; $\tau \rightarrow e\nu\nu$</td>
<td>$(4.91 \pm 0.50 \pm 0.66) \times 10^{-2}$</td>
<td>$(247 \pm 13 \pm 17) \text{ MeV}$</td>
</tr>
<tr>
<td>$D_s \rightarrow \tau\nu$; $\tau \rightarrow \mu\nu\nu$</td>
<td>$(5.07 \pm 0.48 \pm 0.54) \times 10^{-2}$</td>
<td>$(243 \pm 12 \pm 14) \text{ MeV}$</td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td>$(258.6 \pm 6.4 \pm 7.5) \text{ MeV}$</td>
</tr>
</tbody>
</table>
These results are very competitive:

HPQCD (2010) give $f_{D_s} = (248.0 \pm 2.5) \text{ MeV}$
Conclusion and summary

- BaBar used its entire dataset to provide precise absolute measurements of the branching fractions:
 - $B(D_s \rightarrow e \nu) < 2.8 \times 10^{-4}$
 - $B(D_s \rightarrow \mu \nu) = (6.02 \pm 0.37 \pm 0.33) \times 10^{-3}$
 - $B(D_s \rightarrow \tau \nu) = (5.00 \pm 0.35 \pm 0.49) \times 10^{-2}$
 - $B(D_s \rightarrow KKp) = (5.78 \pm 0.20 \pm 0.30) \times 10^{-2}$

- The resulting value for f_{D_s} is competitive with the world average.

- These results give $f_{D_s} = (258.6 \pm 6.4 \pm 7.5) \text{ MeV}$
 - 1.0σ from most recent UL-QCD expectation (HPQCD).

- Publication accepted by PRD-RC (DVR1031).
Backup

- New physics potential
- Excited charm tag reconstruction
- Flavor and baryon balancing
- $D_s \rightarrow K_SK$ crosscheck
Is UQ-LQCD \(f_{D_s} \) calculation wrong?

- The same method gives high accuracy calculation for \(f_D \).
- The disagreement increases as the lattice spacing decreases.
- We’d expect to see a similar disagreement for \(f_D \).
 - Another analyst is currently measuring \(f_D \) using \(B(D \rightarrow \mu \nu) \)

What about leptoquarks?

- Limits on proton lifetime constrain possible models.
- Measurements of \(\tau \rightarrow \eta \nu \) and \(D \rightarrow \mu \mu \) constrain couplings to the kinds of quarks. (eg leptoquarks would have to prefer the \(s \) quark to the \(d \) quark)

And a Higgs?

- A Higgs boson would tend to couple to the \(cs \) more than \(cd \). This could be the first sign of a Higgs boson!
Excited charm tags

- In order to “clean up” the event, we attempt to reconstruct excited charm tags in the decay modes:

 | $D^{*+} \rightarrow D^0 \pi^+$ | $D^{*0} \rightarrow D^0 \pi^0$ |
 | $D^{*+} \rightarrow D^+ \pi^+$ | $D^{*0} \rightarrow D^0 \gamma$ |

- Reconstructions are **not** rejected if they fail to meet these criteria.

- Reconstructing these tags reducing combinatorial backgrounds in later reconstruction.
Flavor and baryon balancing

- We require flavor to be balanced in the event:
 - The charm tag balances the charm of the D_s meson.
 - An additional kaon is required to balance the strangeness of the D_s meson.
 - Both K^\pm and K_S^0 are considered
 - If a Λ_c^+ is present, a proton is required to balance the baryon number of the Λ_c^+.
Another crosscheck ($D_s \rightarrow K_SK$) is used to perform studies in the data:

- This is not blind.
- It’s used mainly to check shapes of probability density functions.
- It showed that the kinematic fit χ^2 distribution was not well modeled in MC.
- Used to inform smearing and shifting of signal probability density function.